

CORRELATION BETWEEN TWO SPERM DNA FRAGMENTATION TESTS (TUNEL ASSAY AND SCSA) AND EVALUATION OF TUNEL ASSAY INTER-LABS VARIABILITY

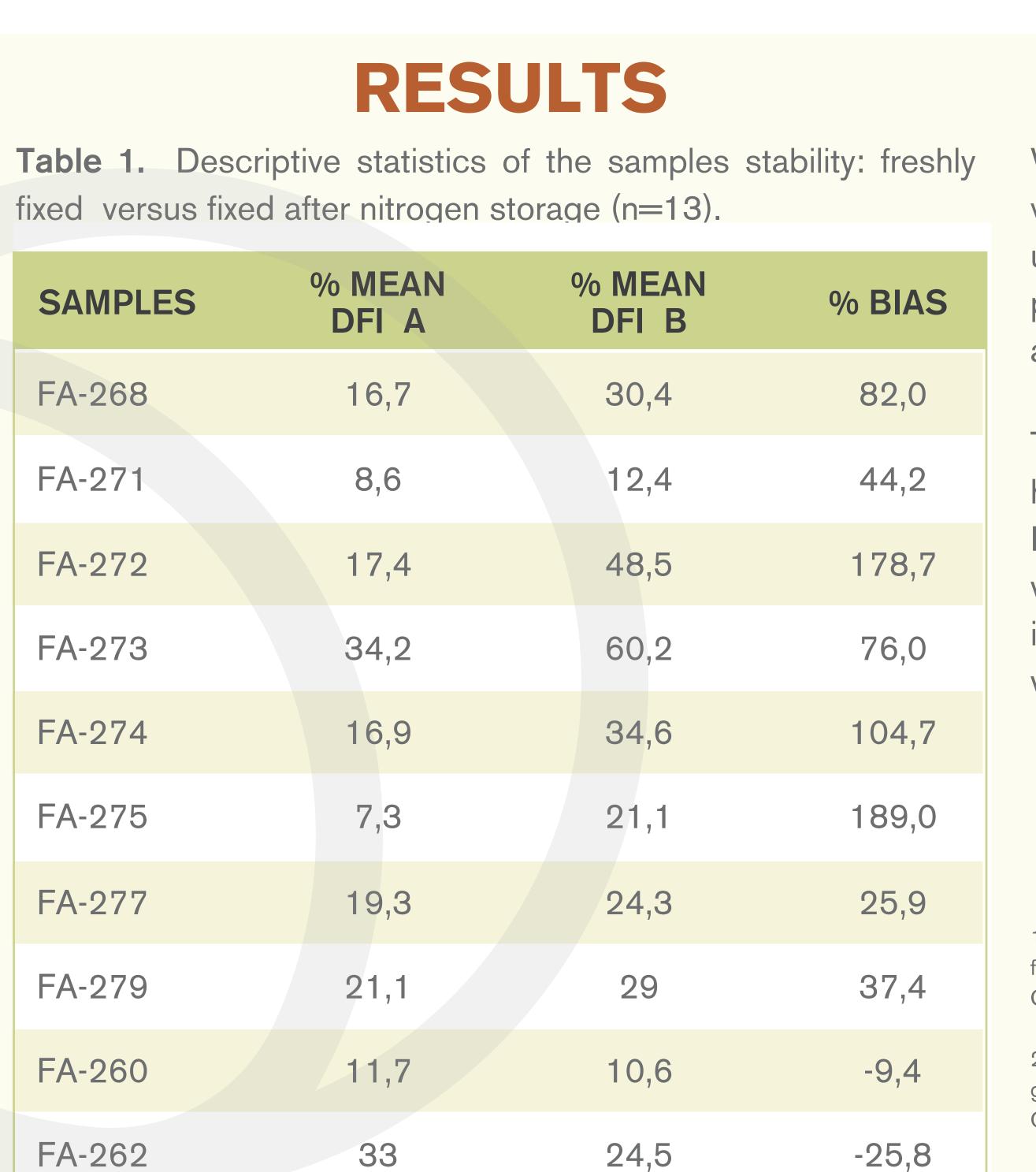
LE SAINT C.¹, VINGATARAMIN L.¹, ALIX S.¹, PHILLIPS S.¹⁻², KADOCH I.J.¹⁻³

ABSTRACT

The aim of the study was to adapt and validate a method for **Introduction:** Over the last decade, numerous studies has measuring sperm DNA fragmentation by terminal deoxynucleotidy confirmed that by analyzing sperm DNA, the outcome of spontaneous pregnancy and assisted reproductive techniques transferase dUTP nick end labeling (TUNEL) assay, using a flow can be better explained than traditional sperm parameters [6-7]. cytometer. The most commonly performed tests to predict sperm DNA fragmentation (SDF) are sperm chromatin structure assay (SCSA) and the terminal deoxynucleotidyl transferase dUTP nick and METHODS labeling (TUNEL). Here, at clinic ovo, we have adapted and validated on sperm sample, a research use only (RUO) kit to Several patients were referred to the andrology department at propose the assay to our patients. clinic ovo to obtain samples of seminal ejaculates. For the

Methods : We have two stages: a pre-analytical and an analytical validation [1-5]. The pre-analytical validation allows us to control the condition during the process of the sample, which consists of PAF as soon as possible. verifying the fixative reagents, the specimen storage, stability and transportation. As for the analytical validation, several parameters These sample allows us to developed the assay and do a prewere calculated: linearity, repeatability, variability inter and intra analytical and analytical validation. To do so, we used a flow assay and the background of the method. The TUNEL assay was cytometer accuri C6 (BD Biosciences, MI, USA), and a KIT APO compared with the SCSA assay for the same sample. An inter direct (BD Pharmigen, CA, USA). Samples were fixed and laboratory validation was also done with EYLAU laboratory (Paris, stayed at -20°C for a minimum of 24H and analyzed within two France) and Royal Victoria laboratory. weeks.

Results: When samples were fixed after nitrogen conservation method was compared with two laboratories, EYLAU Our versus when they were freshly fixed, there was a bias of 74.7% Laboratory (Paris, France) and Royal Victoria Laboratory (Table 1). Upon this finding, we decided to fix the sample as (Montreal, Quebec). EYLAU laboratory analyzed samples by quickly as possible with the reagent fixative. Once fixed, the TUNEL assay using In Situ cell Death Kit, fluorescein (Roche samples are analyzed within two weeks. Patient data was diagnostics Corporation, Mannheim, Germany) with a Beckman determined over repeated time point to ascertain a natural Coulter flow cytometer. Victoria Laboratory used the SCSA variability. By assessing the intra assay variability (4.5%) and inter method coupled with a flow cytometer. assay (7.8%), we found a bias of \leq 5%. The background variability derived from the instrument was 10%. The assay linearity was also calculated by diluting a positive sample with a negative sample. The bias of the validation inter laboratory was 1.3%. R²= 0.73 when comparing Eylau Laboratory (Paris) using TUNEL assay, and STATISTICS R²= 0.57 comparing SCSA (McGill Urology Research Department, Montreal) (Figure 1). Each sample was treated in duplicate. The average results, the


Conclusions: We report a pre-analytical and an analytical validation process to measuring sperm DNA fragmentation by TUNEL assay using a bench top flow cytometer.

¹ CLINIQUE OVO, MONTREAL, QC, CANADA. ² MCGILL UNIVERSITY, MONTREAL, QC, CANADA. ³ DEPARTMENT OF OBSTETRICS AND GYNAECOLOGY, UNIVERSITY OF MONTREAL, QC, CANADA. ³ DEPARTMENT OF OBSTETRICS AND GYNAECOLOGY, UNIVERSITY OF MONTREAL, QC, CANADA. ³ DEPARTMENT OF OBSTETRICS AND GYNAECOLOGY, UNIVERSITY OF MONTREAL, QC, CANADA. ³ DEPARTMENT OF OBSTETRICS AND GYNAECOLOGY, UNIVERSITY OF MONTREAL, QC, CANADA. ³ DEPARTMENT OF OBSTETRICS AND GYNAECOLOGY, UNIVERSITY OF MONTREAL, QC, CANADA. ³ DEPARTMENT OF OBSTETRICS AND GYNAECOLOGY, UNIVERSITY OF MONTREAL, QC, CANADA. ³ DEPARTMENT OF OBSTETRICS AND GYNAECOLOGY, UNIVERSITY OF MONTREAL, QC, CANADA. ³ DEPARTMENT OF OBSTETRICS AND GYNAECOLOGY, UNIVERSITY OF MONTREAL, QC, CANADA. ³ DEPARTMENT OF OBSTETRICS AND GYNAECOLOGY, UNIVERSITY OF MONTREAL, QC, CANADA. ³ DEPARTMENT OF OBSTETRICS AND GYNAECOLOGY, UNIVERSITY OF MONTREAL, QC, CANADA. ³ DEPARTMENT OF OBSTETRICS AND GYNAECOLOGY, UNIVERSITY OF MONTREAL, QC, CANADA. ³ DEPARTMENT OF OBSTETRICS AND GYNAECOLOGY, UNIVERSITY OF MONTREAL, QC, CANADA. ³ DEPARTMENT OF OBSTETRICS AND GYNAECOLOGY, UNIVERSITY OF MONTREAL, QC, CANADA. ³ DEPARTMENT OF OBSTETRICS AND GYNAECOLOGY, UNIVERSITY OF MONTREAL, QC, CANADA. ³ DEPARTMENT OF OBSTETRICS AND GYNAECOLOGY, UNIVERSITY OF MONTREAL, QC, CANADA. ³ DEPARTMENT OF OBSTETRICS AND GYNAECOLOGY.

- seminal samples to be eligible for testing, the patients has to practice 72H of abstinence. Once the concentration of the sample was calculated, 2.5 Millions cells were fixed with 2%

coefficient of variation (CV) and the bias percentage was calculated using the software GraphPad Prism version 5.

3. Davis BH, Dasgupta A, Kussick S, Han J-Y, Estrellado A, ICSH/ICCS Working Group. Validation of cell-based fluorescence assays: practice guidelines from the ICSH and ICCS - part II - preanalytical issues. Cytometry B Clin Cytom. 2013 Oct;84(5):286–90.

4. Wood B, Jevremovic D, Béné MC, Yan M, Jacobs P, Litwin V, et al. Validation of cell-based fluorescence assays: practice guidelines from the ICSH and ICCS - part V - assay performance criteria. Cytometry B Clin Cytom. 2013 Oct;84(5):315–23.

5. Tangri S, Vall H, Kaplan D, Hoffman B, Purvis N, Porwit A, et al. Validation of cell-based fluorescence assays: practice guidelines from the ICSH and ICCS - part III - analytical issues. Cytometry B Clin Cytom. 2013 Oct;84(5):291-308.

6. Sharma R, Ahmad G, Esteves SC, Agarwal A. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay using bench top flow cytometer for evaluation of sperm DNA fragmentation in fertility laboratories: protocol, reference values, and quality control. J Assist Reprod Genet. 2016 Feb;33(2):291-300.

0,0

31,6

236,8

74.7

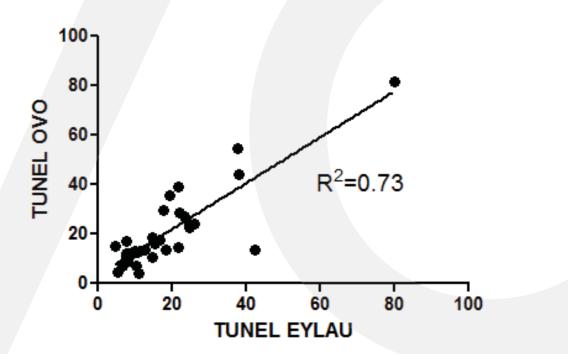
Figure 1. Inter-labs validation

29,4

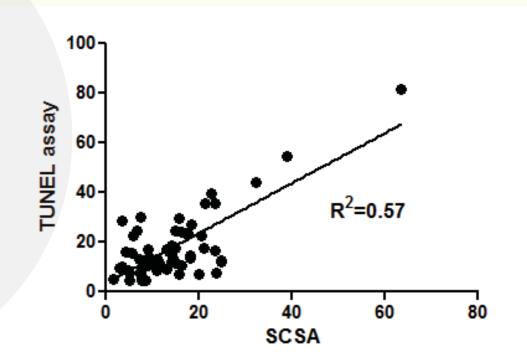
17,4

8,7

Mean DFI % A: Sample freshly fixed before analysis


Mean DFI % B: Sample store in nitrogen before fixation

FA-264


FA-265

FA-269

% MEAN BIAS

TUNEL assay comparison Eylau Laboratory versus ovo labo (n=32)

29,4

22,9

29,3

TUNEL assay comparison SCSA versus TUNEL assay ovo

AMERICAN SOCIETY FOR REPRODUCTIVE MEDICINE

72[™] ANNUAL MEETING 15th - 19^h October, 2016 Salt Lake City, Utah

CONCLUSION

We have discussed a detailed method of the development and validation in measuring sperm DNA fragmentation by TUNEL assay using a flow cytometer. This study allows us to standardize the parameters necessary to process patient's sample by following the agreement established by CLSI, ICSH and ICCS [1-5].

The purpose of this study was to propose the test to our patients having fertility problem. The cut off point is 16.8% set out by Rakesh S et al [6]. 2015. The high specifity of the TUNEL assay will be useful in correctly identifying infertile patients. This protocol is currently use in our laboratory to help patients who are facing with fertility problems.

REFERENCES

1. Barnett D, Louzao R, Gambell P, De J, Oldaker T, Hanson CA, et al. Validation of cell-based fluorescence assays: practice guidelines from the ICSH and ICCS - part IV - postanalytic considerations. Cytometry B Clin Cytom. 2013 Oct;84(5):309–14.

2. Davis BH, Wood B, Oldaker T, Barnett D. Validation of cell-based fluorescence assays: practice guidelines from the ICSH and ICCS - part I - rationale and aims. Cytometry B Clin Cytom. 2013 Oct;84(5):282-5.

7. Sharma RK, Sabanegh E, Mahfouz R, Gupta S, Thiyagarajan A, Agarwal A. TUNEL as a test for sperm DNA damage in the evaluation of male infertility. Urology. 2010 Dec;76(6):1380-6.

